

Reg.	No.	:	•••••	

Name:.....

Fourth Semester B.Tech. Degree Examination, May 2013 (2008 Scheme) 08.402 DIGITAL ELECTRONICS AND LOGIC DESIGN (E)

Time: 3 Hours

Max. Marks: 100

o pricultane de conventer using o

Answer all questions. Each question carries 4 marks.

- 1. What are error correction codes? Give example.
- 2. Convert (ABC)₁₆ to decimal.
- 3. Design and implement a half subtracter using NAND gates.
- 4. What are multiplexers? Give example.
- 5. Differentiate between an edge triggered and a master slave flip flop.
- 6. What is a T flipflop?
- 7. Draw the logic diagram of a mod 4 ripple down counter.
- 8. Explain fan out and power dissipation of TTL Logic family.
- 9. What is a PAL?
- 10. Give any two applications of counters.

PART-B

Answer any one question from each Module. Each question carries 20 marks.

Module - I

- 11. a) Using K map reduce the expression, $f = \pi$ M (2, 8, 9, 10, 11, 12, 14) and implement the minimal expression in universal logic.
 - b) Explain the 2's complement method of arithmetic taking into account the various possibilities. Also give example for each condition.

10

10

12. a) Convert the following : i) (1101 . 11)₂ to decimal ii) (1762 . 46)₈ to hexadecimal iii) $(76)_{10}$ to octal iv) (E79A . 6A4)₁₆ to binary. 10 b) Prove the expression $(A + C)(\overline{A} + B) = AB + \overline{A}C$. 5 c) State and explain De Morgan's theorems. 5 Module - II 13. a) Design and set up a 4 bit binary to gray code converter using gates. 10 b) Design and set up a 4 bit BCD adder circuit using parallel binary adders. 10 14. a) Explain the internal circuit of a TTL NAND gate. 10 b) Show an arrangement to obtain a 16 input multiplexer from two 8 input multiplexers. 10 Module - III 15. a) Explain a clocked SR flip flop with truth table. Also explain how it can be converted to a D flipflop. 12 b) Explain a Universal Shift Register. 16. a) Write short notes on PLA and FPGA. b) Draw and explain the working of a Johnson's counter.